

SAINT-GOBAIN NO MUNDO

UMA DAS **100 EMPRESAS**MAIS INOVADORAS
DO MUNDO

COMPROMISSO DE NEUTRALIZAR AS EMISSÕES DE CARBONO ATÉ 2050

FUNDADA HÁ MAIS DE **350 ANOS**

SERVIÇOS DISPONÍVEIS GRATUITOS

- ✓ 8.7 BI EM VENDAS EM 2020
- √ 56 FÁBRICAS
- ✓ 3 MINERADORAS
- ✓ 7 ESCRITÓRIOS COMERCIAIS
- ✓ 49 CENTROS DE DISTRIBUIÇÃO
- √ 79 LOJAS
- ✓ 2 E-COMMERCE
- ✓ 1 CENTRO DE PESQUISA E DESENVOLVIMENTO

UMA DAS 100 EMPRESAS MAIS INOVADORAS DO MUNDO

NOSSAS MARCAS

ADFORS

Tecidos e não tecidos em fibra de vidro para construção civil e indústria.

PLACO

Paredes, Forros e Revestimentos em drywall Placo.

TEKBOND

A Tekbond é a unidade especializada na produção e na importação de produtos adesivos, adesivos instantâneos, selantes, travas químicas, silicones, entre outros

PLÁSTICOS DE PERFORMANCE

Maior fabricante mundial de produtos em polímeros de engenharia e alto desempenho, servindo os principais setores industriais em todo o mundo.

BRASILIT

As melhores soluções para Coberturas, Construções a Seco e Caixas D'Água de todo o Brasil.

SAINT-GOBAIN CANALIZAÇÃO

Tubos, Conexões, Válvulas e Tampões de Ferro Dúctil para transporte fluidos.

MINERAÇÃO JUNDU

Segmento de mineração de minerais nãometálicos, produzindo e comercializando areias-base, areias especiais, sílica moída etc.

SEKURIT

Produz vidros automotivos, desenvolvendo novas tecnologias para todas as montadoras do mercado mundial

CEBRACE

Maior produtora de vidros e espelhos da América do Sul.

SAINT-GOBAIN GLASS

A Saint-Gobain Glass fabrica vidros texturizados para os mercados da construção civil, arquitetura de interiores, design e arte.

ISOVER

A Isover é lider mundial na fabricação de produtos para isolação térmica e acústica para construção civil e mercados técnicos e industriais.

VETROTECH

Projeta, fabrica e distribui soluções de vidro de segurança de alta performance e resistentes ao fogo.

ISOVER

Líder mundial na fabricação de produtos para isolação térmica e acústica para construção civil e mercados técnicos e industriais.

WEBER

Líder mundial na fabricação de argamassas, impermeabilizantes, revestimentos para pisos, fachadas e soluções técnicas.

TOCA OBRA

Marketplace multimarcas especialista em materiais para construção, reformas e acabamento, focado no pequeno e médio vareio da construção.

NORTON

Soluções para atender aplicações nos segmentos automotivo, construção civil e indústria.

TELHANORTE

Rede varejista multiespecialista em materiais para construção e reforma.

MATERIAIS CERÂMICOS

Portfolio completo de Carbeto de Silício para as indústrias de cerâmicas técnicas, refratários, abrasivos e metalurgia.

TUMELERO

é a rede varejista multiespecialista em materiais para construção e reforma.

LINHA DE PRODUTOS

PRODUTOS EM FERRO DÚCTIL

PEGADA DE CARBONO

Nossa **Pegada do Carbono** foi certificada pela ABNT, garantindo confiabilidade e aceitabilidade. Possibilitando a utilização do **SELO AMBIENTAL** nos produtos, demonstrando o compromisso da Saint-Gobain com o plano de sustentabilidade.

POTENCIAL DE GERAÇÃO DE VALOR NO SANEAMENTO É ENORME

DISPÊNDIO DE CAPITAL

¥8%

Manutenção mais eficiente significa que os ativos podem ser utilizados no seu maior potencial, evitando investimentos de modernização precipitados

SERVIÇO IMPRODUTIVO

Ordens de serviços improdutivas e/ou duplicadas significativamente reduzidas em função da maior visibilidade e capacidade de predição

REDUÇÃO DE OPEX

Manutenção preditiva sendo parte da estratégia operacional reduz número de intervenções emergenciais e melhora disponibilidade da planta

GASTO DE ENERGIA

Estratégias de 0% bombeamento definidas a partir de projeções de demanda assegura gasto de energia nos momentos em que a tarifa é mais benéfica

REDUÇÃO DE PERDAS

Visibilidade para as perdas em cada parte da rede de distribuição permite identificar de forma mais assertive ações de combate.

CUSTOS DE TI & DADOS

Soluções de Gestão de 40% dados na nuvem permitem forma mais assertive e rápida, reduzindo custos de Ti

SENSORES PAM

EXEMPLOS DE AUTOMAÇÃO DE PROCESSOS

Automação da Operação

- Nível: Manter nível mínimo à jusante para garantir o abastecimento
 - Sensor de nível do açude por radar
 - Canal para distribuição Mede nível e vazão
- Saída: pressão e vazão → supervisório
- Horário → bombas ligadas/desligadas
- Vazão Pagamento da perda
- **Pressão**: Proteção de rede hidráulica, atuação em bombas (softstarter)
- Analisador Multiparâmetro → melhor planejamento dos recursos e automação da dosagem

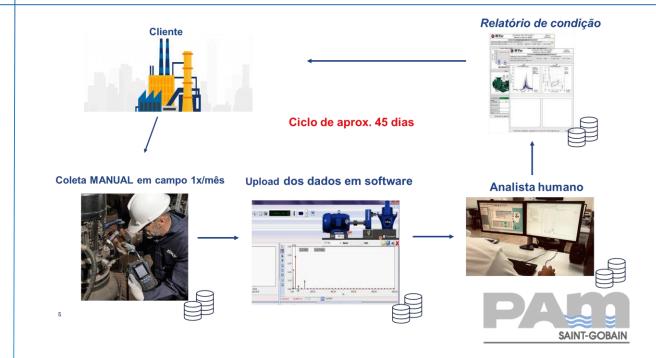
Sensoriamento e Machine Learning

- Perdas cruzamento reclamações/consumo mínimo noturno/ balanço de massa
- Eficiência energética: Quanto está gastando de energia, se está otimizado saving de 14% energia elétrica
- Manutenção preditiva 300kR\$/mês savings com manutenção preditiva

MANUTENÇÃO PREDITIVA – ATÉ HOJE

Nível tecnológico empregado

Manutenção Preditiva


Manutenção Preventiva

Manutenção Corretiva

Eficiência (redução de custos)

			Ate noje
	Corretiva	Preventiva	Preditiva
Custo			
Tempo	Ů Ů Ů Ů Ů ŮŮ	Ů Ů Ů Ů Ů	ŮŮŮ
Investimento	\$	\$\$\$\$	\$\$\$\$\$\$\$\$

Beneficios Manutenção Preditiva	Percentual	
Redução dos custos de manutenção	50 a 80%	
Redução de falhas nas máquinas	50 a 60%	
Redução de estoque de sobressalentes	20 a 30%	
Redução de horas extras para manutenção	20 a 50%	
Redução do tempo de parada de máquinas	50 a 80%	
Aumento na vida das máquinas	20 a 40%	
Aumento da produtividade	20 a 30%	
Aumento dos lucros	25 a 60%	

MODELOS DE SENSORES PAM MONITORING SYSTEMS

PAM 1 - Power

Sensor de consumo de energia elétrica para eficiência energética

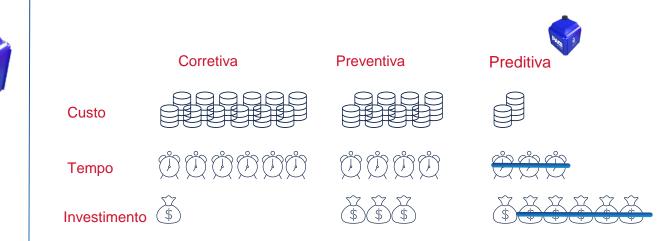
PAM 2 - Preditiva

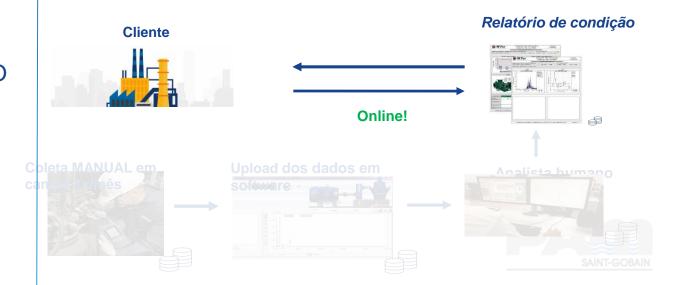
Sensor de vibração e temperatura para **Manutenção Preditiva**

PAM 3 - Smartpipe

Sensor de Vazão, pressão, transiente hidráulico e vazamento para **tubos inteligentes**

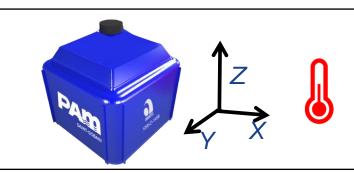
- ➤ Assinatura mensal Zero Capex
- ➤ Garantia no fornecimento dos dados e relatórios


Melhor e mais completa solução no mercado Possibilidade de demonstração gratuita


MANUTENÇÃO PREDITIVA PAM MONITORING SYSTEMS

- Totalmente Wireless em dados e energia
- Sem limites de distância
- Modelo de negócios com investimento inicial ZERO
- Assinatura mensal que cabe no bolso
- Suporte técnico Saint-Gobain e análises

Trazer todos os benefícios da manutenção preditiva, para um nível de custos de uma manutenção corretiva


ESPECIFICAÇÕES TÉCNICAS PAM MONITORAMENTO

PAM 1 - Power

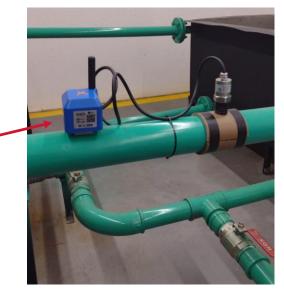
- Coleta de dados elétricos (Tensão, corrente, potência elétrica, fulgas de corrente, consume instantâneo, etc)
- Energy Harvesting
- Link Sensor-Gateway Alcance 1km Com barreiras e interferências
- Link Gateway Rede flexível (rede PAM, rede cliente WI-FI, ethernet, 4G, 5G), sem limites de distância, protocolos de segurança com criptografia de ponta a ponta
- Adaptável a protocolos de segurança do cliente
- IP66, com possibilidades de aprovação para IP69 e Zonas classificadas (0, 1 e 2).
- Certificação ISM Europa EN 300 220 e ANATEL
- Dimensões 40x40x50 (mm)
- Fixação por clique

PAM 2 - Preditiva

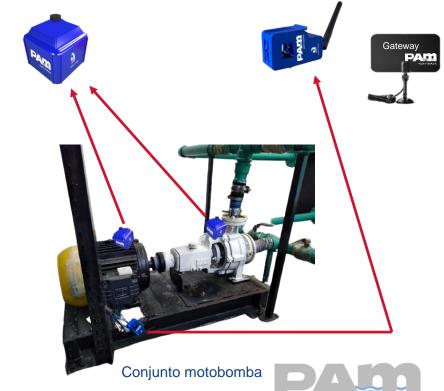
- Coleta de vibração nos eixos X, Y e Z 6.000 a 24.000 linhas de resolução
- Eixo Z ± 50g, spec. 12KHz / 3dB
- Eixo X ± 16g, espec. 6,5KHz / 3dB
- Eixo y ± 16g, espec 5KHz / 3dB
- Coleta de temperatura (°c)
- Energy Harvesting
- Link Sensor-Gateway Alcance 1km Com barreiras e interferências
- Link Gateway Rede flexível (rede PAM, rede cliente WI-FI, ethernet, 4G, 5G), sem limites de distância, protocolos de segurança com criptografia de ponta a ponta
- · Adaptável a protocolos de segurança do cliente
- IP68, com possibilidades de aprovação para IP69 e Zonas classificadas (0, 1 e 2)
- Certificação ISM Europa EN 300 220 e ANATEL
- Dimensões 40x40x50 (mm)
- Fixação por parafuso via parafuso 8 e 6 mm ou imã

PAM 3 - Smartpipe

- Coleta de pressão a 500 leituras/s após variação de 0,2bar
- Eixo Z \pm 50g, spec. 12KHz / 3dB
- Eixo X ± 16g, espec. 6,5KHz / 3dB
- Eixo y ± 16g, espec 5KHz / 3dB
- Coleta de temperatura (°c)
- Energy Harvesting
- Link Sensor-Gateway Alcance 1km Com barreiras e interferências
- Link Gateway Rede flexível (rede PAM, rede cliente WI-FI, ethernet, 4G, 5G), sem limites de distância, protocolos de segurança com criptografia de ponta a ponta
- Adaptável a protocolos de segurança do cliente
- IP68, com possibilidades de aprovação para IP69 e Zonas classificadas (0, 1 e 2).
- Certificação ISM Europa EN 300 220 e ANATEL
- Dimensões 40x40x50 (mm)
- Fixação por parafuso via parafuso 8 e 6 mm ou imã



INSTALAÇÃO



Consumo de energia

A forma de instalação sensor é em forma de clique, conforme imagem abaixo, sem limite de bitola. Portanto é uma solução não-invasiva e fácil de instalar e mover para outros pontos.

Análise preditiva (temperatura e vibração) Facilmente instalado magneticamente, por adesivo ou parafusos 6mm ou 8mm:

CASE DE SUCESSO EFICIÊNCIA ENERGÉTICA: SAINT-GOBAIN

Dashboard de consumo em tempo real

Sobreposição de consumo de equipamentos iguais para identificação de performance diferentes

Mapa de calor com consumo horário

Project Summary

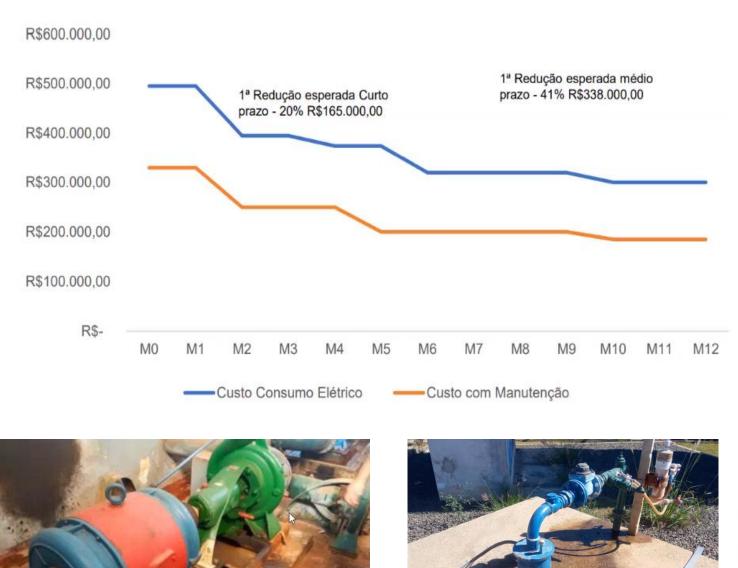
Objective: Decrease peak demand, which accounted for almost 30% of the annual electrical energy costs in 2016

CASE STUDIES & IDENTIFIED PROJECTS

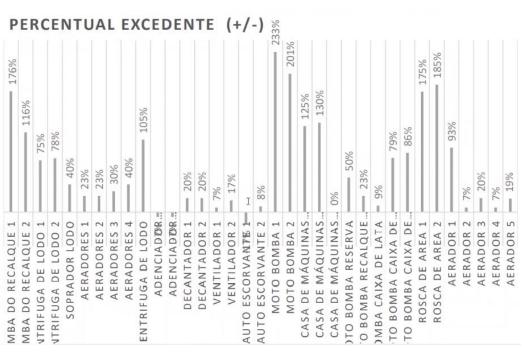
- Device Analyzer KPI tool for more predictive equipment maintenance
- 2 Batch process cycling longer than needed

3 Identical equipment with different electrical loads

4 Dryer fans left on continuously


14% savings of 2017 electrical spend

2%



5%

CASE DE SUCESSO PREDITIVA: SAAE

Measuremer	nts	01/01/2000 06:50:09		°C
Sp1	22,9 °C		A STATE OF THE PARTY OF THE PAR	29,3
Sp2	22,7 °C	NEW COLUMN	Sp1	A CONTRACTOR OF THE PARTY OF TH
Sp3	22,3 °C		- ọ -	A
Parameters				
Emissivity	0.89			7 7 7 6
Refl. temp.	33 °C			Y
Vote				
ETE PORTO ALE	GRE TRAFO	XX	XXXXX	7
		Sp3 -		Sp2 -0 -
	De .			
		IR_25303.jpg	FLIR T200	14,0 456001023

FILTRALITE

SOLUÇÕES FILTRALITE® PARA ÁGUA POTÁVEL E TRATAMENTO DE EFLUENTES

Água potável

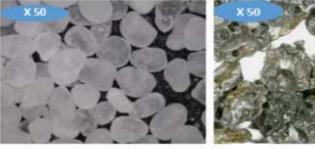
Mais de 150 referências em mais de 20 países no mundo inteiro

Remoção de nitratos Mont Valérien, Le Pecq, Joinville, Louveciennes, Hong-Kong, New Delhi

Remoção de Ferro, Manganês e Arsênico SIBROM

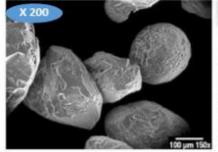
Tratamento de esgoto

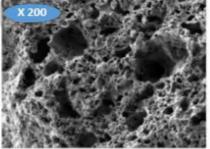
Tratamento terciário Stockholm, Oslo BIOFOR® SIAAP, Grenoble...


BIOPUR® Bordeaux, Chamonix

Filtração com meio granular

Tratamento biológico


O QUE É FILTRALITE®?



Sand

Filtralite

- Argila expandida, material cerâmico, produzido na Noruega pelo grupo Saint-Gobain, disponíveis em diversos tamanhos de grãos/densidades.
- Queimada a 1200°C, com alta resistência ao atrito > 5,5 na escala de Mohs. Portanto sua durabilidade pode chegar a 20 anos, o dobro da média dos filtros convencionais.
- Altamente poroso, com superfície específica > 5000m2/m3, o que confere:
 - ✓ Uma dimensão extra de filtragem, chegando a 480 m³/m²/d
 - ✓ Produção até 50% mais água no mesmo volume de areia antracito
 - ✓ Redução em 3x a necessidade de retrolavagens.
 - √ Favorece processos biológicos
- Maior distribuição de tamanhos de orifícios em relação a areia, retém partículas naturalmente diversas em tamanho.
- Menor perda de carga, com praticamente zero entupimento

QUAIS SÃO SEUS BENEFÍCIOS?

Amplia em até **50% capacidade de filtração**, com mesmo filtro e bombas, significa economia em **obra civil** em novos filtros e **maior atendimento à população**

Durabilidade sendo o **dobro** em relação a filtros convencionais, incorre menos capex e manutenção.

Estendendo em até 3x o tempo entre retrolavagens, reduz o custo com:

@ energia elétrica até -75%

tempo não produtivo est. -65%

perda de água est. -65%

Payback médio de 2-3 anos, chegando a 1 ano se capacidade de filtração for gargalo

Pegada carbono:

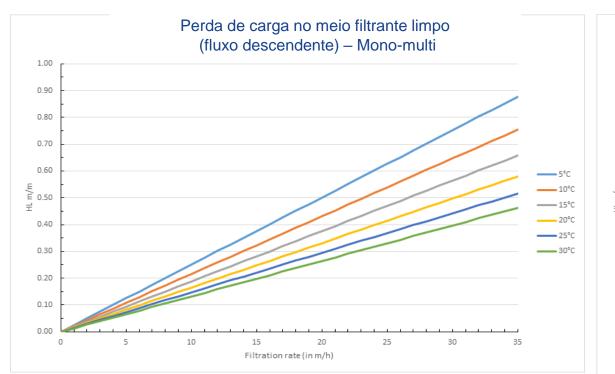
- ✓ Em novos filtros a redução é de 50%.
- ✓ Em reformas, mantém a pegada **aumentando a produtividade**.

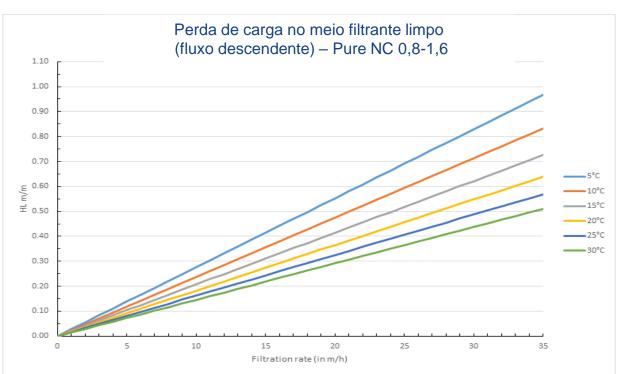
NOSSAS MELHORES SOLUÇÕES PARA FILTRAÇÃO CAMADA SIMPLES E DUPLA

APLICAÇÕES COMUNS

Filtralite® Pure **NC** 0,8-1,6 é adequado para a seguinte aplicação:

Tratamento de água	Aplicação	Parâmetros operacionais sugeridos
Água potável	Filtração de leito granular (filtros abertos e de pressão)	Profundidade do leito: de 0,6 m a 1,2 m como meio de camada única. Taxa de filtração: normalmente varia de 120 a 480 m³/m²/d, e em alguns casos até 720 m³/m²/d.


Filtralite® Pure **Mono-Multi** é aplicado para as seguintes finalidades

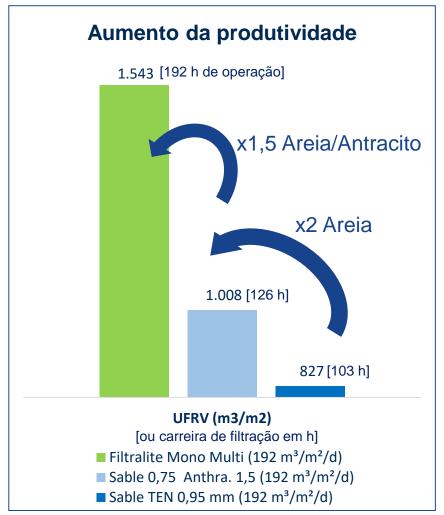

Tratamento de água	Aplicação	Parâmetros operacionais sugeridos
Água potável	Filtração de leito granular (filtros abertos e de pressão)	Profundidade do leito: de 1m a 2m como meio de camada única. Taxa de filtração: normalmente varia de 120 a 480 m³/m²/d, e em alguns casos até 720 m³/m²/d.
Dessalinização Pré-tratamento	Filtração de leito granular (filtros abertos e de pressão)	Profundidade do leito: de 1m a 2m. Taxa de filtração: normalmente varia de 120 a 480 m³/m²/d, e em alguns casos até 720 m³/m²/d.

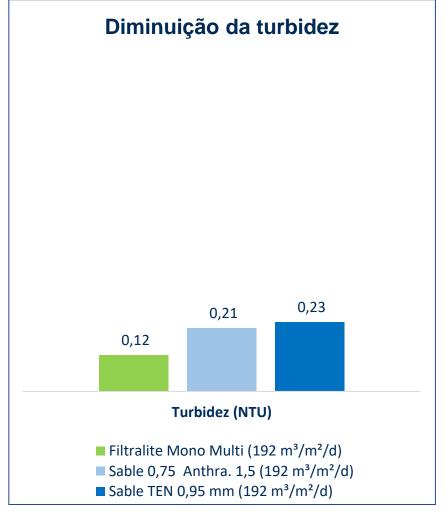
OPERAÇÃO DE FILTRAÇÃO

Devido à sua alta porosidade e formato angular, o Filtralite® opera com menor perda de carga do que o meio filtrante convencional, permitindo economia de energia. Os gráficos abaixo mostram perda de carga pela taxa de filtração durante a operação de retrolavagem em fluxo descendente a depender da temperatura.

Multicamada

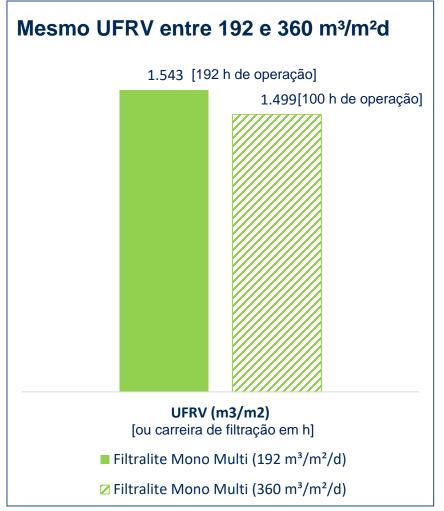
Mono-camada

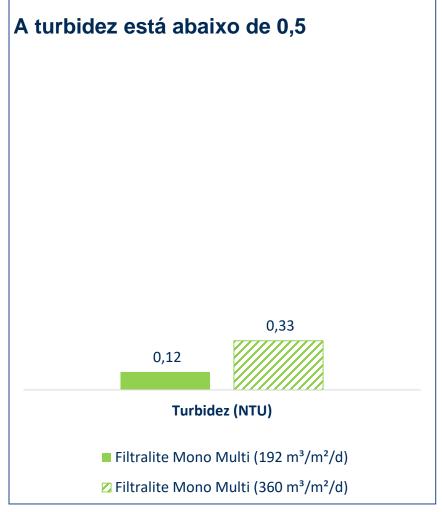

Considerando um exemplo de areia e antracito, a 20°C*, taxa de 360 m³/m²/d - perda de carga de 0,38 a 0,55 m/m. Para a mesma taxa, Filtralite apresenta 0,26 m/m, entre 34% e 54% menor.


Sobra mais carga hidráulica para retenção de impurezas, e maior duração de carreira de filtração

MELHORA DA PRODUTIVIDADE E TURBIDEZ EM COMPARAÇÃO COM AREIA

Observa-se um aumento da produtividade e ao mesmo tempo uma redução pela metade na turbidez



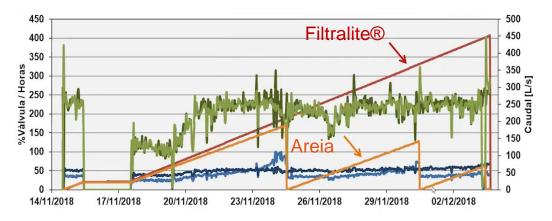

O parâmetro **UFRV** expressa a quantidade total de água filtrada por m² de meio filtrante, durante uma carreira de filtração. Quanto maior, melhor o desempenho do meio filtrante, considerando o mesmo tempo de carreira de filtração.

ÓTIMO DESEMPENHO MESMO QUANDO A TAXA DE FILTRAÇÃO É DOBRADA

Observa-se uma manutenção do aumento da produtividade sem desenquadrar a qualidade da água de saída.

UFRV: quantidade total de água filtrada por m² de meio filtrante durante uma carreira de filtração. Mesma quantidade de água, com a maior taxa, menor o tempo para passar o mesmo volume.

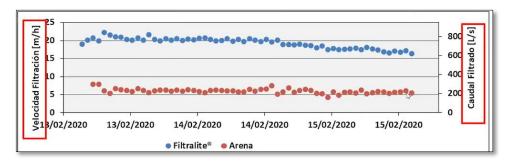
CASOS DE SUCESSO



CASE DE SUCESSO: ETA LLOBREGAT, CATALUNHA

Contexto: Necessário aumentar a capacidade de 3,2m³/s para 4m³/s. 12 filtros de areia.

Resultados:


- Filtralite® apresentou menor perda de carga, mantendo qualidade de água
- Redução de retrolavagens foi de 3x com Filtralite®, mantendo vazão
 - - 61% consumo de energia
 - 65% o tempo não produtivo
 - 65% perda de água
- 4m³/s alcançados com 360 m³/m²d com Filtralite®, operando 6 filtros invés de 12.
- Ampliação da planta sem obra civil com Filtralite®
- Payback: 1,6 anos, substituição total dos 12 filtros da ETAP Llobregat

Lavados (10 meses estudio)	Filtralite®	Arena
Agua Consumida [m³]	24.227	68.818
Energía Consumida [kWh]	5.890	15.200
Maniobras equipos	416	1.216

Tempo de ciclo de filtragem com Filtralite® chega a ser 3x maior que da areia, economizando 61% energia, 65% manobras e água perdida em retrolavagens

		Filtralite®	Arena
Volumen Total	Filtrado [m³]	155.961	48.111
Turbidez Promed	io [NTU] (n=11)	0,59	0,51
Caudal Filtrado	Promedio	731	224
[L/s]	Máximo	843	297
/elocidad Filtración	Promedio	19,2	5,9
[m/h]	Máximo	22,1	7,8
Horas Fi	trando	6	1

OUTROS CASES DE SUCESSO

1) ETA Bedrichov, República Tcheca

Produção de 600 l / s, para 100k habitantes. A substituição da areia por Filtralite® dobrou a capacidade de produção e reduziu os custos de energia em 75% por aumentar em 4x o intervalo entre retrolavagens. Payback de 2-3 anos

2) Fredrikstad warter utility, sul da Noruega

Produção de 60.000 m³/dia, o Filtralite® substituindo areia + antracito reduziu as perdas de água em cerca de 125.000 m³ / ano.

Resultado: substituição dos demais 7 dos 8 filtros por Filtralite.

3) Thames water, Reino Unido

- Em 2007, a Thames Water testou extensivamente 12 meios filtrantes alternativos comparando aos filtros de areia / antracito existentes, que tendiam a entupir rapidamente durante episódios de água carregada de algas brutas.
- A implementação do Filtralite® Mono-Multi resultou em ciclos de filtração 8 vezes mais longos mantendo qualidade de água filtrada. Filtralite® pareceu menos vulnerável à algas (em ambas escala piloto e real)
- **Estudaram tecnicamente** (capacidade de filtragem, resistência hidráulica, a quantidade de partículas aprisionadas, frequência de retrolavagem) e **financeiramente** (Durabilidade e disponibilidade comercial).
- Resultado: 37 filtros já foram renovados e foi instituído um programa de no longo prazo de substituição de todos os filtros por Filtralite®, por conferir melhor desempenho e menores custos operacionais.

4) Suez na CIRSEE em Le Pecq, perto do rio Sena, França

Foram testados meios filtrantes com água do Sena previamente coagulada e posteriormente com sedimentada.

A turbidez residual mais baixa foram as obtidas com Filtralite® Pure e Multi. Filtralite® mono-multi é claramente mais eficiente do que a mídia convencional (aumenta UFRV por um fator de 1,5 a 2).

Filtralite® tem flexibilidade, aceita uma maior degradação da qualidade da água na entrada (somente coagulada) e maior taxa de filtração.

A redução de retrolavagens tem impacto significativo sobre redução de custos operacionais e disponibilidade de água.

