Impact Assessment Modeling of Low-Water Management Policy

Modelagem para Avaliação de Impacto de Política de Gestão da Agua Baixa

IV FUNASA Seminar of Public Health Engineering, march 18 – 22, 2013 - Belo Horizonte (MG Brazil)

Pierre Mazzega
IRD (Institut de Recherche pour le Développement) - France
Joint International Lab OCE – IRD / University of Brasilia
Pierre.mazzega@ird.fr
1. Issues in Water Management

2. Knowledge Representation & Sharing

3. Simulator Development

4. Simulating
Contemporary issues of IWRM

- Management of a scarce resource
- Maintenance of ecological equilibrium & services
- Impacts of Climate Change
- Manage both the water quantity and quality
- Design basin-scale water management
- Account for competing and inter-related uses
- Specificity issues in urban / rural water
- Improve the monitoring of the resource
Incentive

Governance issue is key for the sustainable development of the water resource

- « Resource » implies « actors »
- Water is a « local » resource implies “actors’ coordination is required for resource management”
- « Coordination of actions » implies « rules » and « norms » (policy, law, etc.)
- *Ex ante* impact assessment of environmental norm implementation is very necessary
MAELIA: « Multi-Agents for Environmental norms Impact Assessment »

2009 - 2013

- **Consortium**
 - GET Midi-Pyrénées Observatory Toulouse
 - IRIT: Institut Recherche en Informatique de Toulouse
 - MSHS: Maisons des sciences Humaines et Sociales
 - AGIR/Institut Nat. Recherche Agronomique

- **Sponsor [2009-2013]**
 - Foundation RTRA STAE « Science and Technology for Aeronautics and Space” www.fondation-stae.net/
Objectives

• Develop an hybrid modeling platform (multi-agent system, equations, GIS) in order to explore the following questions:

 What are the impacts of a given corpus of norms in different socio-economical & environmental contexts?

 What are the impacts of different normative corpus in a given socio-economical & environmental context?

 Are these impacts consistent with the expectations of the policy- or law-makers?
Case Study: Adour-Garonne Basin

- **Natural resources**
 - Basin ~ 120 000 km², 120 000 km of waterways
 - Rainfall: 600 mm to 2000 mm / year
 - Potential of 90 km³ for flow & very large volumes in the groundwater

- **Artificial reserves**
 - 2.5 km³ of hydropower reserves of which 0.136 km³ under agreement with EDF to support low-flow
 - 0.356 km³ dedicated to supporting low water (dams, etc.).
 - 0.290 km³ accumulated in approximately 15,000 small dams for irrigation

- **Average yearly withdrawal: 2.5 km³**
- **~Equally distributed between drinking water, industry, farming (~ 645 000 ha irrigated)**
With a priority issue …

• But very uneven distribution over the year
 – Concentration of agricultural levies in times of low flow (up to 80%)
 – During the 2003 heat wave, 1.2 km³ diverted for irrigation (about twice the average yearly withdrawals for irrigation)

• Deficit of about 250 MCM in the Adour-Garonne

 Recurring conflicts of uses (and users)

 Negative impact on aquatic ecosystems

 Enforce limitation of water uses

 Economy: insecurity and loss of production income

→ We focus on the modeling of low-water management
Crisis Management -> Structural Management

- During low-water periods (étiage in French), rivers reach their lowest levels of the year.

- These last years, flows were regularly measured **under the minimal threshold** (DOE) which guarantees a normal functioning of the ecosystem.

- **LEMA (2006)** is a law dedicated to reform the management of these situations, the definition of water volumes quotas, their control by local authorities, etc.

Measuring the « crisis flows » (crisis management)

Define abstraction volumes (structural management)
Context: New Management Device

Application of the 2006 Water Law (LEMA):

• Implementation of the new regulation on abstraction volumes for agricultural irrigation

• **Authorized abstraction water volumes for agriculture (AWV):** water available in the basin, considering the needs for ecosystem functioning (DOE) and the priority uses: domestic and industrial

• **Single Organizations for Collective Management (2012):** (CA, CACG, CG, EPTB,...): be responsible for the management of agricultural water in each sub-watershed (consistent hydrologic units).
4 Priority Scenarios

• Contrast 2 ways of evaluating the water volume legally available for irrigation

• Contrast 2 climate change scenarios (mainly rainfall forcing)

• And many other possible options (e.g.):
 – Contrast agriculture EU policy (aids to farmers)
 – Contrast markets (water prices, prices of farm production, energy prices, land prices)
 – Contrast water monitoring systems?
1. Issues in Water Management

2. Knowledge Representation & Sharing

3. Simulator Development

4. Simulating
Abstraction / Instantiation Levels
Meta-Model of Social-Ecological Systems
“Limit” to the Model

Internal / External

Graphical Language

- An ecological or socio-economic process that impacts resource \(R_2 \) is dependent on the state of resource \(R_1 \).
- An ecological or socio-economic process impacts resource \(R \) (material or cognitive).
- An ecological or socio-economic process being dependent on the resource state it impacts.
- Actor A performs an activity that impacts the resource \(R \).
- Actor A uses the resource \(R \) to execute at least one of his activity; the relation can be labeled or not.
- Actor A performs an activity that simultaneously impacts resources \(R_1 \) and \(R_2 \), their respective states being inter-dependent.
- Actor A performs an activity that changes the realization of a process being dependent on the state of resource \(R_1 \) and impacting resource \(R_2 \).
Hydrological Sub-System
Agronomic Sub-System
Sub-System of Other Uses
Normative Sub-System
Structure of Low-Water Management System (Adour-Garonne)
Detailed Representation of the Processes & Activities

Each knowledge holder of products:

- Class, interaction or process diagrams
- Equations
- Algorithms
- Rules of change

... any form of representation that allows the researcher to formalize and share knowledge on biophysical and social processes.
Space & Time Scales of Dynamics

Direct process interactions (fitting equations)

⇒ Temporal and spatial scales are structuring elements for all processes

Interactions are set at the level of entities (resources)

⇒ Each (set of) process has its own logical representation of space and time.
⇒ Consistency is ensured at the level of entities (as integrity constraint)
1. Issues in Water Management

2. Knowledge Representation & Sharing

3. Simulator Development

4. Simulating
Modeling Processes & Activities

- Ecological Processes
- Socio-economical Processes
- Activities
- Decision-taking
Ecological Processes

- **Soil / Plant expert model** (INRA)
- **SWAT modules for quantitative hydrology**
- **Weather & CC**: historical data and model projections (CERFACS)
- **Land Cover / Land Use changes**:
 ✓ Corine Land Cover 2000 – 2006
 ✓ RPG 2006-2010
 ✓ 2010-2050: statistical model (cellular automata)
- **Demographic changes**: INSEE model (Omphale) disaggregated at the level of Municipalities
- **Technological innovations**: process of knowledge diffusion over social networks
Examples of Process Modeling

Soil / Plant

Easily usable water reserve R_{eu}: amount of water available in the soil that cannot exceed a certain maximum amount specific to soil type

$$R_{eu} = W_{irrigation} + W_{rainfall}$$

Maximum Evapotranspiration ETP_{Max}: Maximum value of the ETP of a given culture at a vegetative stage in given climate context

Potential Evapotranspiration ETP_{Pot}: water that may be lost through plant transpiration (soil \to atmosphere)

$$ETP_{Max} = ETP_{Pot} \times K_c$$

Crop coefficients K_c: the plant will take a certain amount of the water depending on its phenological stage of development
Drinking Water Consumption

All the processes that are used to estimate:
• water withdrawals and discharges;
• their likely evolution up to 2050.
Industrial Water Consumption

All processes for estimating the industrial water withdrawals and discharges:

• Logging homogeneous year
• Discharges indexed on withdrawals via a factor
• Evolution in time is not taken into account
Water storage in dams and releases for the support of low water periods:
• Rules for water release and storage
• Optimization \textit{wrt} hydropower production (and demand)
LUCC – Hydrology Multi-scales coupling

Hydrologie: dépend du LULC

Hte Résolution: bilan hydrique fin sur parcelle (échelle métrique)
Locate the Available Resources (1)

BD Carthage®
Sections of watercourses
• Toponyms
Surface hydrology
• Resource type (river, lake, reservoir,...)

• Toponym of the resource
• Code of the resource
Locate the Available Resources (2)

Water Information System

Groundwater masses

• Type, Toponym

• Toponym of the resource

• Code of the resource
Locate the Available Resources (3)

BD TOPO®

Under-water surfaces = surfaces > 20 m de long, Watercourse > 7,5 m (width)
masonry basins > 10 m
floodplains > 20 m (width)

- Nature (basin, surface of water)
- Regime (intermittent, permanent)

![Map](image)

AEAG typology of water mass to extract the hill dams

- form (stretching, convexity)
- area
- Localization (salted littoral zones)
- **BD Carthage® classification**
Activities

Key actors in the quantitative management of water (endowed with a model of rationality)

- Farmers
- Prefects
- dam managers
- managers of low water

Main activities related to a decision-making process

- Crop rotation
- Crop management
- Irrigation
- Decree of water-use restriction
Crop rotation

Yearly rotation:
- Activities implemented by the farmer of choosing a system of culture (culture + associated strategies) for each parcel
- Rational decision by evaluating various cognitive resources

Corp Management

Sowing, harvesting: decision-making process resulting from the strategies of the technical itinerary associated with the parcel.
Irrigation of the parcels

Irrigation

- Decision-making process based on the irrigation strategy attached to the technical itinerary
- Take into account the restrictions on irrigation

Water withdrawals are done at the scale of the hydrographic zone
Locate irrigators and irrigated areas

Culture Islets from CAP statements = contiguous set of cultivation parcels exploited by the same farmer
- Surface of different culture classes
- Farm characteristics
- Irrigated?: y/n

- Positioning of the irrigated islets
- Municipality of implantation of the farm
Locate the reported withdrawn volumes

Water Information System

Points of agricultural levies (2003 à 2010)

- Municipality centroid
- Nature of the resource
 - Surface water
 - Confined groundwater
 - Groundwater
 - Hill reservoirs
- N° de SIRET of the farm or company
- Toponym of the resource
- Code of the resource
Locate the authorized abstraction volumes

Towards a “regulatory map”?

Management reference units
• Water courses
• Withdrawn volumes
• Authorized volumes

↓
• Withdrawn volumes
• Authorized volumes
The whole farmer’s behavior is a set of decisions at various time scales:

- **Strategic behavior** (year): choice of the cropping plan and of the culture strategies associated
 - Sowing strategy
 - Irrigation strategy
 - Harvest strategy

- **Operational behavior** (day): application of the culture strategies taking into account workload time
Representing Actor’s Rationality

Multi-criteria decision-making method based on the belief theory, (Shafer 1976) and evidence theory (Dempster)

Approach allowing to manage:
- incompleteness and imprecision of knowledge of the criteria
- the consequences of choices on these criteria
- conflicts between decision criteria

- **Plans**: agent’s strategic vision (ex.: list of culture rotation on each parcel)
- **Desires**: formalized as a set of criteria that will be used to evaluate the plans (ex.: max expected profit, min workload, etc.)
- **Beliefs**: agent’s beliefs about the system functioning.
- **Intention**: the chosen plan.
Activity Diagrams: Farmers
Decision-making procedure for restricting water uses

Convening actors of the drought cell

Low-water period stars

Survey of Situation

Definition of a Restriction Strategy

Enactment of Prefectural Decrees

Activity diagram of a Departmental Direction (Tarn-et-Garonne)
Strategy for Restriction Level
Mapping the Extension of Decrees

Decrees of restriction of water uses
• Recovery from the DDT 31 of a corpus of 50 decrees between 2001 and 2011

Control / Verbalization
• Activity of the « water police » agent
• Much rational behavior

Principles
• Upstream-down stream solidarity
• Continuity of restrictions
1. Issues in Water Management

2. Knowledge Representation & Sharing

3. Simulator Development

4. Simulating
Data Model

Identification / discussion with the owners / collection

Preprocessing and harmonization

GIS / GAMA integration

Consistency constraints

Use (inputs, outputs)

- RPG / LPIS [irrigable parcels]
- BD Carthage [hydrological network]
- BD topo [hill lakes]
- SIEau [withdrawals & releases]
- INSEE, Omphale ...[démography projections]
- EDF / dams
- Administrative limits
- ...
Intégration des données: exemple

1 - Association géographique guidée par les chroniques de prélèvements

2.a - Association par analyse de la table attributaire

2.b - Association par analyse spatiale

3 - Fusion des couches SIG

4 - La relation entre îlots irrigués et réserves d'eau est finalement établie par croisement des 2 couches SIG.
Plateforme de Simulation

Environnement GAMA (IRD)
Multi-agents + SIG + équations
Développements interfaces usagers & modélisateurs
Production des indicateurs sociaux & env.
Hydrological Flow

Resolution: hydrological zone

Red to deep blue: no water to saturation

Includes withdrawals (irrigation, drinking water, industry)

Time step: day
Crop Growth

We here do not distinguish the different kinds of crops

Intensity of **BLUE** increase when the phenological state is more advanced

1 image / day

Period ~6 months
Agricultural Islet Disappearance

Urbanization + Fallow

Green: forest, pastures
Orange: agricultural islets
Red: Urbanized areas

1 image / year
Period ~70 years
Farmers’ Activities

1 tractor = 1 farmer

Islet color = main plot sown (wheat, maize, barley, etc.).

The farmer is always on the islet he is working on (sow, irrigate or harvest).
Scenarios & Main Indicators

- Water flow at DOE points
- Surplus / deficit of water (wrt DOE)
- Water crisis frequency
- Yield of Irrigated corps
- Agricultural production
- Sustainability of Farms
- Patterns of crop rotation

- Total and irrigated surfaces of farms
- Number of farms
- Cost of implementation / operation of alternative management policy (€)
- Acceptability (norm compliance, satisfaction level of various actors)

<table>
<thead>
<tr>
<th>CLIMATE CHANGE</th>
<th>WATER MANAGEMENT</th>
<th>By WATER FLOWS</th>
<th>By ABSTRACTION VOLUMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>« BAU »</td>
<td>S11</td>
<td>S12</td>
<td></td>
</tr>
<tr>
<td>REDUCED PRECIPITATION during LOW-WTAER</td>
<td>S21</td>
<td>S22</td>
<td></td>
</tr>
</tbody>
</table>
Near Future

On-Going (2013)

• Sensitivity analysis & calibration
• Simulation of scenarios & analyses

Next steps

• Modeling water « small cycle »
• Scenarios of urban water demand and supply
Thank you for attention

Web Site of the Project:

http://maelia1a.wordpress.com/

Amblard F. (UT1), Arcangéli J.P. (UT1), Becerra S. (CNRS), Belestrat M. (UT3), Boulet R. (Univ. Lyon), Charon M.H. (INRA), Condamines A. (CNRS), Debril Th. (INRA), Gaudou B. (UT1), Gondet E. (CNRS), Gangneron F. (CNRS), Haouès-Jouve S. (UT2), Hong Y. (UT3), Jouve B. (UT2), Leenhardt D. (INRA), Louail Th. (UT1), March H. (Univ. Barcelone), Mayor E. (UT1), Mazzega P. (CNRS / IRD), Monteil C. (ENFAT), Nguyen V.B. (UT3), Panzoli D. (Univ. Albi), Pernet Ch. (UT2), Saqalli M. (UT2), Sibertin-Blanc Ch. (UT1), Taillardier P. (Univ. Rouen), Théron H. (INRA), Thiriot S. (Univ. Paris), Vavasseur M. (UT1), Veyrac B. (UT2)...